Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorised as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customised advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

« Back to Glossary Index

Properties and Structure
- Boiling point of hydrogen peroxide is 150.2°C (302.4°F)
- Forms stable adducts with urea and sodium carbonate
- Can be used as a carrier in some reactions with triphenylphosphine oxide
- Has a nonplanar molecular structure with twisted C symmetry
- Exhibits chiral properties and enantiomerism
- O−O bond is a single bond with high rotational barriers for enantiomers
- Dihedral angle between O–H bonds is approximately 100°
- Molecular structures differ in gaseous and crystalline states due to hydrogen bonding
- Crystals of hydrogen peroxide are tetragonal with space group P422
- Enantiospecific interactions may have led to homochirality in RNA world
- Hydrogen peroxide has higher boiling point and melting point compared to analogues
- Analogues adopt similar skewed structures due to repulsion between lone pairs
- Hydrogen disulfide and diphosphane have weak hydrogen bonding and little chemical similarity
- Hydroxylamine crystallizes more readily due to strong hydrogen bonding
- Hydrogen peroxide exhibits unique properties among analogues

Aqueous solutions
- Forms eutectic mixture with freezing-point depression down to -56°C
- Boiling point of mixture is depressed in relation to pure water and pure hydrogen peroxide
- Density of aqueous solutions varies with concentration
- Most commonly available as solutions in water at 3% and 6% concentrations
- Commercial grades range from 70% to 98% and require special care in storage

Natural occurrence
- Produced by biological processes mediated by enzymes
- Detected in surface water, groundwater, and atmosphere
- Sea water contains 0.5 to 14μg/L of hydrogen peroxide, freshwater contains 1 to 30μg/L
- Concentrations in air vary depending on conditions such as season and altitude
- Assay can be used to measure hydrogen peroxide in biological systems

Production
- Hydrogen peroxide is manufactured using the anthraquinone process.
- The process involves reduction of an anthraquinone to anthrahydroquinone, followed by autoxidation.
- Most commercial processes use compressed air for oxidation.
- Effective recycling of extraction solvents and catalysts is crucial for the economics of the process.
- The net reaction for the anthraquinone-catalyzed process is: anthrahydroquinone + oxygen -> hydrogen peroxide + anthraquinone.
- In the past, hydrogen peroxide was prepared by hydrolysis of ammonium persulfate.
- Ammonium persulfate was obtained through the electrolysis of ammonium bisulfate in sulfuric acid.
- This method is no longer used industrially.
- Small amounts of hydrogen peroxide can be formed through electrolysis, photochemistry, and electric arc.
- A commercially viable route for hydrogen peroxide production involves the reaction of hydrogen with oxygen.
- However, direct processes often result in a dilute solution that is uneconomical for transportation.
- None of these alternative routes have reached industrial-scale synthesis yet.

Reactions
- Hydrogen peroxide is a stronger acid than water. Its pK value is 11.65.
- Hydrogen peroxide disproportionates to form water and oxygen.
- The reaction has a negative enthalpy change and a positive entropy change.
- Decomposition is accelerated by temperature, concentration, and pH.
- Alkaline conditions make hydrogen peroxide unstable.
- Various redox-active ions and compounds catalyze the decomposition.
- In acidic solutions, hydrogen peroxide is a powerful oxidizer.
- It can oxidize sulfite ions to sulfate ions.
- The oxidation potentials of hydrogen peroxide are dependent on the specific oxidizing agent.
- Under alkaline conditions, hydrogen peroxide acts as a reductant.
- It can reduce sodium hypochlorite and potassium permanganate, producing oxygen gas.
- This reduction reaction is a convenient method for preparing oxygen in the laboratory.

« Back to Glossary Index
chevron-down linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram